Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi
نویسنده
چکیده
Casein phosphopeptides (CPPs) containing chelated calcium drastically increase the secretion of extracellular homologous and heterologous proteins in filamentous fungi. Casein phosphopeptides released by digestion of alpha - and beta-casein are rich in phosphoserine residues (SerP). They stimulate enzyme secretion in the gastrointestinal tract and enhance the immune response in mammals, and are used as food supplements. It is well known that casein phosphopeptides transport Ca2+ across the membranes and play an important role in Ca2+ homeostasis in the cells. Addition of CPPs drastically increases the production of heterologous proteins in Aspergillus as host for industrial enzyme production. Recent proteomics studies showed that CPPs alter drastically the vesicle-mediated secretory pathway in filamentous fungi, apparently because they change the calcium concentration in organelles that act as calcium reservoirs. In the organelles calcium homeostasis a major role is played by the pmr1 gene, that encodes a Ca2+/Mn2+ transport ATPase, localized in the Golgi complex; this transporter controls the balance between intra-Golgi and cytoplasmic Ca2+ concentrations. A Golgi-located casein kinase (CkiA) governs the ER to Golgi directionality of the movement of secretory proteins by interacting with the COPII coat of secretory vesicles when they reach the Golgi. Mutants defective in the casein-2 kinase CkiA show abnormal targeting of some secretory proteins, including cytoplasmic membrane amino acid transporters that in ckiA mutants are miss-targeted to vacuolar membranes. Interestingly, addition of CPPs increases a glyceraldehyde-3-phpshate dehydrogenase protein that is known to associate with microtubules and act as a vesicle/membrane fusogenic agent. In summary, CPPs alter the protein secretory pathway in fungi adapting it to a deregulated protein traffic through the organelles and vesicles what results in a drastic increase in secretion of heterologous and also of some homologous proteins.
منابع مشابه
Development of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum
Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...
متن کاملCasein phosphopeptides drastically increase the secretion of extracellular proteins in Aspergillus awamori. Proteomics studies reveal changes in the secretory pathway
BACKGROUND The secretion of heterologous animal proteins in filamentous fungi is usually limited by bottlenecks in the vesicle-mediated secretory pathway. RESULTS Using the secretion of bovine chymosin in Aspergillus awamori as a model, we found a drastic increase (40 to 80-fold) in cells grown with casein or casein phosphopeptides (CPPs). CPPs are rich in phosphoserine, but phosphoserine its...
متن کاملCharacterization of secretory genes ypt1/yptA and nsf1/nsfA from two filamentous fungi: induction of secretory pathway genes of Trichoderma reesei under secretion stress conditions.
Two genes involved in protein secretion, encoding the Rab protein YPT1/YPTA and the general fusion factor NSFI/NSFA, were characterized from two filamentous fungi, Trichoderma reesei and Aspergillus niger var. awamori. The isolated genes showed a high level of conservation with their Saccharomyces cerevisiae and mammalian counterparts, and T. reesei ypt1 was shown to complement yeast Ypt1p depl...
متن کاملUnconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the exi...
متن کاملRegulated and constitutive secretion. Differential effects of protein synthesis arrest on transport of glycosaminoglycan chains to the two secretory pathways.
Many neural and endocrine cells possess two pathways of secretion: a regulated pathway and a constitutive pathway. Peptide hormones are stored in granules which undergo regulated release whereas other surface-bound proteins are externalized constitutively via a distinct set of vesicles. An important issue is whether proper function of these pathways requires continuous protein synthesis. Wielan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2014